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Goals of Presentation 

• What is a Supercritical CO2 Brayton Cycle? 

• Benefits of S-CO2 Power Systems 
– Economic and Environmental 

– All Heat Sources 

• DOE-NE Gen-IV S-CO2 Research Program 

• Applications List  (Fossil, Solar, Nuclear) 

• Scaling Study Results (10 MWe) 

– 10 MWe Development and Demonstration Program Status of 

Development Effort  

– Commercial and Government 

• Summary and Conclusions 



What is a Supercritical CO2 Brayton Cycle?  

 How does it work? 

 

Liquid like Densities with CO2 

Very Small Systems, 

High Efficiency due to Low Pumping Power 
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Above Critical Point 

High Efficiency  Non-Ideal Gas  

Sufficiently High for Dry Cooling 

High Efficiency at Lower Temp 

 (Due to Non-Ideal Gas Props) 

High Density Means Very Small Power Conversion System 

Non-Ideal Gas Means Higher Efficiency at Moderate Temperature 

 Cycle Efficiencies vs Source Temperature 
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Supercritical CO2 Cycle Applicable to Most 

Thermal Heat Sources 

7 

1 

2 

3 

5 

6 

8 

Compressors Turbine 

HT Recup 
4 

Alternator Waste Heat  

Chiller 

LT Recup 

CO2 

Solar  

Carbon Capture & Sequestration  

CCS+EOR 

Fossil   Oxy-Combustion 

Supercritical CO2  

Brayton Cycle  

DOE-NE  

Gen IV 

Nuclear  

(Gas, Sodium, Water) 

Military 

SNL Solar Tower 

SNL has Funding or Research Agreements with most Agencies Representing these Heat Sources 

Fix Base & Marine ARRA 

Geothermal 

 

Waste Heat 
Bottoming Cycle 

to a Gas Turbine 

 

Energy 

Storage & 
Heat 

Transport & 

CCHE 

 



Key Features to a Supercritical Brayton Cycle 

• Peak Turbine Inlet Temp is well matched to a Variety of 

Heat Sources (Nuclear, Solar, Gas, Coal, Syn-Gas, Geo)  

• Efficient ~43% - 50%  for 10 - 300 MWe Systems 

–       1000 F (810 K) ~ 538 C         Efficiency = 43 %  

–       1292 F (1565 K) ~ 700 C        Efficiency =50% 

• Advanced Systems (Increase Eff  5-8% points) & Dry 

• Standard Materials (Stainless Steels  and Inconels ) 

• High Power Density for Conversion System 

– ~30 X smaller  than Steam or 6 X for Helium or Air 

– Transportability (Unique or Enabling Capability) 

– HX’s Use Advanced Printed Circuit Board Heat Exchanger 

(PCHE) Technology 

• Modular Capability at ~10-20 MWe 

– Factory Manufacturable (10 MW ~ 2.5m x 8m) 
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Heat Source Operating Temperature Range 

 & SCO2 Power Conversion Efficiency  

for Various Heat Sources 

 

S-CO2 Power Conversion Operating Temperatures are Applicable for All Heat Sources 

Optimum Design Requires Different Approaches for Each Heat Source 

Supercritical Fluid Technology has Untapped Growth Potential 
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DOE Supercritical CO2 Program 

Description 



• DOE Gen-IV S-CO2 Research Program 

– Sandia has developed two S-CO2 loops 

• Compression Loop (At Sandia) + Brayton Loop (At Barber-Nichols) 

• Testing Summary 

– Brayton and Compression Loop Descriptions 

– Compressor Performance Mapping 

– Power Generation in Simple Heated Brayton Cycle 

and in Split-Flow Re-compression Brayton Loop 

– Mixtures 

– Condensation Cycles / Rankine 

– Gas Foil Bearing Development 

– Thrust Bearing Heating 

– High Speed PM Motor Generator Controller Development 

– Sealing Technology 

• Modeling 

• Ability of Sandia S-CO2 Brayton Loop to Reproduce Other Cycles 

• Summary and Conclusions 

 

 

 



Key Technology 
Turbo- Alternator Compressor Design  

Permanent Magnet Generator with Gas Foil Bearings  

  ~24” Long by 12” diameter 

 
Tie Bolts (Pre-stressed) 

Turbine 

Compressor 

Laby Seals 

Journal Bearing 
Thrust Bearing 

 Stator  

 Water Cooling        PM Motor Generator 

                        

Low Pressure Rotor Cavity 

Chamber (150 psia) 

Gas-Foil Bearings 

125 kWe at 75,000 rpm 



Turbomachinery Wheels  
Designed and Manufactured By Barber-Nichols Inc. 
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GenIV-Supercritcal CO2 Brayton Cycle Loop 
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Supercritical CO2 Brayton Loop  

Final Design, Currently Existing, and Alternative Layouts 
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Power Generation in Upgraded S-CO2 

Simple Heated Recuperated Brayton Loop 
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Measured T-S Diagram  
GenIV_110714_0952  



Loss Measurements 
C-2 Compressor T-2 Turbine 

Fraction of Turbine Power Used or Lost  

Heat Loss 

Windage Loss 

Compressor 

Thermal 

Windage 

Total Elect. 

Fraction Elect. Loss 



S-CO2 Power Cycle Economic and 

Environmental Benefits 

• DOE has invested 5 years and ~ $10-11 M  on Proof-of-Principle S-CO2 

Power Systems 

• The Potential Economic and Environmental Benefits of S-CO2 Power 

Systems are Large 

– Useful with All Heat Sources 

– Dry Cooling, Oxy-Combustion with CCS and EOR, Smaller, Simpler, Improved 

Efficiency  

• Development is Still Needed    

– To date only small scale proof-of-concept development loops are operating  

– Heat Source and Power Cycle are Linked (Cycle/Design Research) 

– Heat Exchanger Development is Needed 

• Micro-Channel Design Costs, Transient Cycling, Packaging, Failure  Modes, Cost 

Reductions, Nuclear Certification 

– Commercial Engineering and Demonstration is Needed using 

Industrial Hardware (~10 MWe)  

• Already started in industry 

• Government/Industry Partnership Role Makes Sense 

 

 

 



Scaling Study 



Scaling Rules and Ranges of Application for  

Key Brayton Cycle Turbomachinery Components 

   TM Speed/Size 

Turbine type 

75,000 / 5 cm 

Bearings 

Seals 

Freq/alternator 

 TM Feature 
1.0  

 Power (MWe) 

0.3 3.0  10  30  100  300  

30,000 / 14 cm 10,000 / 40cm 3600 / 1.2 m 

Single stage             Radial                   multi stage 

       Axial              multi stage 

Single stage             Radial                      multi stage 

single stage             Axial           multi stage 

Gas Foil 

Magnetic 

Hydrodynamic oil 

Hydrostatic 

Adv labyrinth 

               Dry lift off                     

Permanent Magnet Wound, Synchronous  

Gearbox, Synchronous  

Shaft 

Configuration Single Shaft 

Dual/Multiple 

• 10 MWe allows use of Commercial Technologies 

High Technology     Commercial Technology 

High $/kWe   Lower $/kWe 



Approximate Shaft Speed  

and Turbine Wheel Diameter 

 
Shaft Speed versus Elect. Power
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Turbine Diameter versus Elect. Power
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Printed Circuit Heat Exchanger Scaling Rules 
Actual

Cost kW lb lb/kW $/lb $/kWth

60000 510 492 0.96 122 118

106000 1600 551 0.34 192 66

210000 2300 1410 0.61 149 91

Average 0.64 154 92

Specific Costs

 Need Cost Reductions  (Materials, Scale, & Advanced Manuf.) to reach 200$/ kWe 

= $ 600/kWe   

LT Recup Gas Cooler Water/CO2 



Potential Applications 
• Nuclear 

• (LWR, SFR, GCR, Molten Salt Reactors)  

• Concentrated Solar Power  (CSP) Towers + Troughs 

• Military (Fixed Base and Marine) 

• Fossil 

– Oxy-combustion with Pulverized Coal with CCS + EOR 

• Solar Power Towers  

• Integrated Bio-Fuel/SCO2 Plant  

• Military Applications (Fixed Base and Marine) 

• Geo-Thermal 

• Waste Heat Applications 

– Gas Turbine Bottoming Cycle 

– Supercritical Water Oxidation 



Concentrated Solar Applications 
Small or Big ? 

1-10 MWe  or 100 MWe 
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Steam Rankine (ENEL) 

Gas Turbine (CES) 

S-CO2  

Or Combinations (PWR) 

Fossil Application 

Oxy-Coal Combustion 

ENEL (Italy) 



                 Nuclear Applications 
 

Why is DOE-NE Interested? 

 
1) Better efficiency than existing plants 

 

2) Smaller Power Plants  

 (30% of Steam) 

3) Simpler Power Plants  

 (1/10th number of valves) 

4) May Eliminate the Intermediate Loop in Sodium Fast 

Reactors 

 



S-CO2 Power Cycles for Reactors 

NGNP 

High Temperature 

Gas Cooled Reactor 
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Sodium Cooled  
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Water Reactor 
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Potential SMR 

Applications 
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Sandia Research Program Summary 
• Sandia/DOE have two operating S-CO2 test loops 

– Research Compression Loop 

– Reconfigurable Brayton Loop 

• Measured Main Compressor Flow Maps 
– Overall Good Agreement with Mean-Line Predictions of the Performance Maps  

– Over a wide range of operating Temperature, pressure, and density 

• Using Brayton loop Configuration available in FY2010 and 2011 
• Heater power was limited to 260/390/520 kW 

• Produced Power in simple heated recuperated Brayton loops (Main TAC and Re-Comp TAC) 

• Power Production in recompression loops (still limit to break even) 

• Cold Startup, Breakeven, Power Production (6% efficiency and 20 kWe), Power/RPM Operation Maps 

• Condensation in Tube and Shell and PCHE heat exchangers  
– Improved Efficiency, HX Development work is beginning 

• Test (critical point) were performed with Mixtures of CO2,  CO2-Neon, CO2 SF6, 

CO2-Butane 
– Can Increase or decrease Tcrit 

– Improved Efficiency (especially for low temperature applications) 

• Thrust Gas Foil Bearing Tests and Modeling 
– Goal : higher thrust load capability and lower frictional power 

• Natural Circulation 
– S-CO2 Gas Fast Reactor 

– C3D CFD Model development 

• Collaborations with Industry + Larger Scale System Development 

 
 

 



Path Forward 

– Path Forward 

• Continue Testing of Proof-of-Principle Small Loop 

• Work/Collaborate with Industry and other Agencies to develop 

S-CO2 System for any heat source at the 10 MWe sized system 

• Propose for First Nuclear Applications 

– Use with LWRs 

– Wet and Dry Cooling 

– 37% and 30% Efficiencies 

– Develop S-CO2 Systems for Nuclear Technology 

– Begin Seeking Gov. Funded 10 MWe S-CO2 power system 

development to support FE, EERE, NE, Other   

• Useful for all heat sources (Nuclear, Solar, Fossil, Geothermal) 

• Numerous early non-nuclear Products (Marine, Fossil, Solar, 

Geo, Waste Heat, Heat Storage and Transport) 

• Improved the economic and environmental benefits for all 

systems (Smaller, Simpler, more Efficient, No Water Cooling) 

 



S-CO2:  Potential 

Potential for S-CO2 Power Generation 

Systems to Improve Economics and 

Environmental Issues on a Large Scale 

1) Dry Cooling 

2) Oxy-Combustion, with CCS and EOR 

3) Smaller and Simpler (than steam) 

4) Improved Efficiency 

5) Combined Heating, Cooling, and Power 

Cycles 

Applicable For All Types of Heat Sources 


